Analyzing GNSS time series to study the earthquake cycle

Anne Socquet

Corinth school on strain mapping 2024/10/22

Seismic Cycle and Slow Slip Events

2

Illustrated on the Japan Trench

Honshu Tectonic Setting

Seismic cycle

https://www.youtube.com/shorts/8u1xjWOIrE4

Seismic Cycle and Slow Slip Events

Illustrated on the Japan Trench

PhD Lou Marill

PhD Lou Marill

PhD Lou Marill

4

PhD Lou Marill

PhD Lou Marill

PhD Lou Marill

PhD Lou Marill

SSEs

PhD Lou Marill

Trench

PhD Lou Marill

Quadratic Trajectory Model

Linear and quadratic trajectory models for 8 stations, from 1997 to 2011, for the East component

Marill et al. JGR 2021

Coseismic displacements computed by the trajectory model

- Megathrust earthquake
 *and main aftershocks
- $aggreen M_w \geq 6.8$ earthquake
- SSE area

Average Velocity Field

- Megathrust earthquake
 and main aftershocks
- $aggreen M_w \geq 6.8$ earthquake
- SSE area
- Volcanic unrest area

Velocity Field Pacific Plate Locking 42°N 42°N 0.9 North Tokach North 2003 / America America Sanriku 🔒 Plate Plate 0.8 1994 40°N 40°N 76 mm/yr] Tohoku oku 2008 \mathcal{X} $\overleftarrow{}$ 38°N Latitude 38°N Latitude \tilde{Tr}_{ench} Locking [*v_{PAC}* = 5.0 0.5 $J_{apa_{H}}$ $J_{ap_{all}}$ Pacific Pacific < ☆ 36°N 36°N Megathrust earthquake Plate Plate 76 and main aftershocks Sagami Trough 0.2 →Observed $\therefore M_w \geq 6.8$ earthquake 34°N 34°N → Predicted Miyakejima Miyakejima mm/yr 2000 2000 0.1 km km Philippine Philippine SSE area 20 mm/yr20 mm/yr 0 75 150 75 150 Sea Plate Sea Plate 0 138°E 140°E 142°E 144°E 138°E 140°E 142°E 144°E Volcanic unrest area Longitude Longitude

Average Velocity Field and inverted interseismic coupling

Marill et al. JGR 2021

Velocity Field Acceleration Field 42°N 42°N Tokach North North **Fokach** 2003 / 2003 / America | America Sanriku Sanriku ↓ 1994★ **P**late Plate **1994** 40°N 40°N Tohoku Tohoku oku 2008 hoku 2008 \mathcal{X} $\overrightarrow{\mathcal{X}}$ 38°N 38°N Latitude Latitude Japan Trench $J_{apa_{ll}}$ Pacific Pacific 7 🕁 36°N 36°N Megathrust earthquake Plate Plate 76 mm Kantó and main aftershocks Sagami Trough Sagami Trough → Significant $\therefore M_w \geq 6.8$ earthquake 34°N 34°N \rightarrow Non-significant Miyakejima Miyakejima mm/yr 2000 2000 km km Philippine Philippine SSE area \bigcirc 20 mm/yr 0 $0.5 \text{ mm}/\text{yr}^2$ 75 150 75 150 Sea Plate Sea Plate 138°E 140°E 142°E 144°E 138°E 140°E 142°E 144°E Volcanic unrest area Longitude Longitude

Average Velocity Field and Acceleration Field

Marill et al. JGR 2021

Accelerated slip before Tohoku earthquake

Marill et al. JGR 2021

Pacific Plate Locking in 1997 Pacific Plate Locking in 2011 42°N 42°N 0.9 0.9 North North America America **Plates** Plate 0.8 0.8 40°N 40°N 76 mm/yr] 0.7 76 mm/yr0.6 \mathcal{X} $\overline{\mathcal{X}}$ 38°N 38°N Latitude Latitude Locking $[v_{PAC} =]$ 0.5 $J_{ap_{a_{II}}}$ $J_{apa_{II}}$ Pacific Pacific 36°N 36°N Megathrust earthquake Plate Plate 76 mm 76, and main aftershocks 0.2 0.2 →Observed →Observed $\therefore M_w \geq 6.8$ earthquake 34°N 34°N → Predicted →Predicted Miyakejima Miyakejima 2000 Philippine 2000 0.1 0.1 km km Philippine 20 mm/yr 0 SSE area 20 mm/yr 0 75 150 75 150 Sea Plate Sea Plate 0 0 138°E 140°E 142°E 144°E 138°E 140°E 142°E 144°E Volcanic unrest area Longitude Longitude

Changes in Velocity Field and interseismic coupling

Marill et al. JGR 2021

Acceleration of $m \ge 3$ earthquakes and slip proxy (weighted stack) on the PAC-NAM interface

Marill et al. JGR 2021

30

14-yearAcceleration Along the Japan Trench

Deceleration North of 39°N

- Heki et al. (1997): related to 1994 Sanriku earthquake ?
 - \rightarrow Does not explain acceleration up to 2011
- Heki & Mitsui (2013): related to 2003 Tokachi earthquake ?
 → Visco-elastic relaxation ?

Acceleration area at 37°–38°N

 Hasegawa & Yoshida (2015): Might have contributed to 2011 Tohoku earthquake failure

New acceleration area South of 36°N

- From acceleration field: slip acceleration on the Pacific Plate
- Far from 2011 Tohoku rupture → remains to be explained

Marill et al. JGR 2021

The 2016 Italian seismic sequence

Monte Vettore Fault System

A practical example of how EPOS GNSS products & Geo-Inquire services can be useful together with time series analysis

Seismic sequence

- Aquila : Mw 6.1 09/04/2009
- Amatrice Mw 6.1 24/08/2016
- Visso Mw 5.9 26/10/2016
- Norcia Mw 6.6 30/10/2016
- Campotosto Mw 5.7 18/01/2017

Chiaralucce et al., SRL 2017

Norcia earthquake: surface ruptures

• Monte Vettore Fault System

Norcia earthquake: surface ruptures

3D GNSS velocity field in Europe

Piña Valdes et al., JGR 2022 39

Interseismic extension across the Appenines seen by GNSS

Interseismic extension : comparison GPS INSAR

Daout et al., Tectonophysics 2023 ⁴¹

What about co-seismic GNSS displacements ?

 \rightarrow One possibility is to use the EPOS-GNSS products

GNSS Positioning & Errors

GNSS Positioning Methods

(https://www.e-education.psu.edu/geog862/node/1727)

What are the different products labels? What are their specificities? EPOS, EUREF, EPOS-EUREF 1260 EPOS stations

Two product solutions developed specifically for EPOS

Principles:

- **Open science, reproducible**
 - All data available: RInEx from EPOS-GNSS Data Gateway, metadata available & verified
 - Fully documented processing strategies using open-source softwares
- Specifically designed for geophysical studies (including for slow movements)
 - Each solution is internally-consistent, generated @ a single Pan-European processing center with one strategy

Daily positions & Multi-year solutions @ 2 Pan-European EPOS Analysis Centers

- > Two independent daily solutions :
 - generated @ 2 independent processing centers
 - with 2 independent processing Strategies & Softwares :

Double difference GAMIT/GLOBK/ITSA Automatic updates @ D-2 & D-25

2 x -

Positions

Time Series

Velocities

Offsets

Quality

Check

- Automated outlier rejection, introduction of discontinuities in time series \geq
- Velocities Computed with MIDAS, station classification based on uncertainty

Independent cross-comparison and validation @ Pan-European Analysis Combination Center

- Comparison of Positions Time Series using CATREF
- Identification of outlier and inconsistencies
- Validation or feedback to the EPOS Analysis Centers

What are the different products labels? What are their specificities? EPOS, EUREF, EPOS-EUREF

Original EUREF product made available through the EPOS GNSS Product Gateway

Principles:

- Open data : RInEx available from EPN data centers, metadata available & verified
- Specifically designed for geodesy and reference frame studies :
 - Geodetic-class stations from the EUREF Permanent Network (EPN)
 - Densifies ITRF over Europe and provides access to European Terrestrial Reference Frame (ETRF/ETRS89)

Regional daily position solution @ 16 EPN Analysis Centers

- each station processed by at least 3
 ACs to insure redundancy and
 increase reliability
- 3 softwares: Bernese, Gamit, Gipsy

Daily and Weekly Combined Positions @ EPN Analysis Combination Center Positions

- Pan-European combinations with Bernese
- Each AC solution is compared to the combined solution to identify and reject outliers
- Aligned to IGS14 using no-net-translation

WUT

Multi-year Solution @ EPN Reference Frame Analysis Center

- Updated each 15 weeks
- Using CATREF

eur

Outlier rejection by visual inspection of time series, introduction of position and velocity discontinuities, station classification based on velocity uncertainties from Hector and velocity variability *

Positions

Time Series

Velocities

What are the different products labels? What are their specificities? EPOS, EUREF, EPOS-EUREF

Densification Product from EUREF and EPOS

Principles:

• **Provide a densified velocity field,** including non-EPOS stations that do not release raw data (yet?)

Regional daily position solution @ 30 EPND & EPOS Analysis Centers

Multi-year Combined Solution @ EPOS-EUREF Combination Center

Positions Time Series Velocities

- Weekly Combined Positions Time Series using CATREF
- Velocities using CATREF, MIDAS, HECTOR
- Station metadata harmonization
- Outlier rejection by automated and visual inspection of time series, introduction of position and velocity discontinuities, velocity filtering, removal of non-representative stations (data quality or monumentation)

2016 Mw6.2 Amatrice & Mw6.1 Norcia, & 2017 Mw5.7 Campotosto

Co-seismic displacements for the August 24, 2016 ml6, Amatrice (central Italy) earthquake estimated from continuous GPS stations

Co-seismic Displacements For The October 26 (Mw5.9) And October 30 (Mw6.5) Central Italy Earthquakes From The Analysis Of GPS Stations

